43,394 research outputs found

    An Accuracy-Assured Privacy-Preserving Recommender System for Internet Commerce

    Full text link
    Recommender systems, tool for predicting users' potential preferences by computing history data and users' interests, show an increasing importance in various Internet applications such as online shopping. As a well-known recommendation method, neighbourhood-based collaborative filtering has attracted considerable attention recently. The risk of revealing users' private information during the process of filtering has attracted noticeable research interests. Among the current solutions, the probabilistic techniques have shown a powerful privacy preserving effect. When facing kk Nearest Neighbour attack, all the existing methods provide no data utility guarantee, for the introduction of global randomness. In this paper, to overcome the problem of recommendation accuracy loss, we propose a novel approach, Partitioned Probabilistic Neighbour Selection, to ensure a required prediction accuracy while maintaining high security against kkNN attack. We define the sum of kk neighbours' similarity as the accuracy metric alpha, the number of user partitions, across which we select the kk neighbours, as the security metric beta. We generalise the kk Nearest Neighbour attack to beta k Nearest Neighbours attack. Differing from the existing approach that selects neighbours across the entire candidate list randomly, our method selects neighbours from each exclusive partition of size kk with a decreasing probability. Theoretical and experimental analysis show that to provide an accuracy-assured recommendation, our Partitioned Probabilistic Neighbour Selection method yields a better trade-off between the recommendation accuracy and system security.Comment: replacement for the previous versio

    A Faster Algorithm to Build New Users Similarity List in Neighbourhood-based Collaborative Filtering

    Full text link
    Neighbourhood-based Collaborative Filtering (CF) has been applied in the industry for several decades, because of the easy implementation and high recommendation accuracy. As the core of neighbourhood-based CF, the task of dynamically maintaining users' similarity list is challenged by cold-start problem and scalability problem. Recently, several methods are presented on solving the two problems. However, these methods applied an O(n2)O(n^2) algorithm to compute the similarity list in a special case, where the new users, with enough recommendation data, have the same rating list. To address the problem of large computational cost caused by the special case, we design a faster (O(1125n2)O(\frac{1}{125}n^2)) algorithm, TwinSearch Algorithm, to avoid computing and sorting the similarity list for the new users repeatedly to save the computational resources. Both theoretical and experimental results show that the TwinSearch Algorithm achieves better running time than the traditional method

    Compositional coding capsule network with k-means routing for text classification

    Full text link
    Text classification is a challenging problem which aims to identify the category of texts. Recently, Capsule Networks (CapsNets) are proposed for image classification. It has been shown that CapsNets have several advantages over Convolutional Neural Networks (CNNs), while, their validity in the domain of text has less been explored. An effective method named deep compositional code learning has been proposed lately. This method can save many parameters about word embeddings without any significant sacrifices in performance. In this paper, we introduce the Compositional Coding (CC) mechanism between capsules, and we propose a new routing algorithm, which is based on k-means clustering theory. Experiments conducted on eight challenging text classification datasets show the proposed method achieves competitive accuracy compared to the state-of-the-art approach with significantly fewer parameters

    An operator splitting scheme for the fractional kinetic Fokker-Planck equation

    Get PDF
    In this paper, we develop an operator splitting scheme for the fractional kinetic Fokker-Planck equation (FKFPE). The scheme consists of two phases: a fractional diffusion phase and a kinetic transport phase. The first phase is solved exactly using the convolution operator while the second one is solved approximately using a variational scheme that minimizes an energy functional with respect to a certain Kantorovich optimal transport cost functional. We prove the convergence of the scheme to a weak solution to FKFPE. As a by-product of our analysis, we also establish a variational formulation for a kinetic transport equation that is relevant in the second phase. Finally, we discuss some extensions of our analysis to more complex systems

    When Globalization Meets Urbanization: Labor Market Reform, Income Inequality, and Economic Growth in the People's Republic of China

    Get PDF
    The development path that the People's Republic of China (PRC) has been following during the past thirty years has led to both internal and external economic imbalances, and is now greatly challenged by the global crisis. This unbalanced growth path was primarily a result of the PRC's labor market reform which took the years of the mid-1990s as its turning point. Before the mid-1990s, the scale of rural-to-urban migration was limited, but it has grown dramatically since then. 1996 also saw drastic employment restructuring in urban areas of the PRC. Labor market reform, accompanied by the foreign exchange system reform in 1994, confirmed the PRC's comparative advantage of low labor cost, and therefore further increased the PRC's reliance on exports. However, the increased income disparity that resulted from the labor market reform may jeopardize sustainable growth if no adjustment is made. To sustain the high economic growth, especially in face of the current crisis, the PRC needs to adjust its reform and development strategies to promote income equality.china labor market unemployment; china income inequality; china economic growth crisis
    • …
    corecore